Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684783

RESUMO

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of PHLPP1, which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.

2.
Cell Syst ; 15(1): 37-48.e4, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38198893

RESUMO

The Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational framework to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to interleukin (IL)-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified cytokine-specific genes associated with late pSTAT3 time frames and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Janus Quinases , Transdução de Sinais , Janus Quinases/genética , Janus Quinases/metabolismo , Transdução de Sinais/genética , Fosforilação , Citocinas/metabolismo , Regulação da Expressão Gênica
3.
Immunohorizons ; 7(11): 771-787, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015461

RESUMO

CD8+ T cell dysfunction contributes to severe respiratory viral infection outcomes in older adults. CD8+ T cells are the primary cell type responsible for viral clearance. With increasing age, CD8+ T cell function declines in conjunction with an accumulation of cytotoxic tissue-resident memory (TRM) CD8+ T cells. We sought to elucidate the role of PD-1 signaling on aged CD8+ T cell function and accumulation of CD8+ TRM cells during acute viral respiratory tract infection, given the importance of PD-1 regulating CD8+ T cells during acute and chronic infections. PD-1 blockade or genetic ablation in aged mice yielded improved CD8+ T cell granzyme B production comparable to that in young mice during human metapneumovirus and influenza viral infections. Syngeneic transplant and adoptive transfer strategies revealed that improved granzyme B production in aged Pdcd1-/- CD8+ T cells was primarily cell intrinsic because aged wild-type CD8+ T cells did not have increased granzyme B production when transplanted into a young host. PD-1 signaling promoted accumulation of cytotoxic CD8+ TRM cells in aged mice. PD-1 blockade of aged mice during rechallenge infection resulted in improved clinical outcomes that paralleled reduced accumulation of CD8+ TRM cells. These findings suggest that PD-1 signaling impaired CD8+ T cell granzyme B production and contributed to CD8+ TRM cell accumulation in the aged lung. These findings have implications for future research investigating PD-1 checkpoint inhibitors as a potential therapeutic option for elderly patients with severe respiratory viral infections.


Assuntos
Infecções Respiratórias , Viroses , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Granzimas , Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1
4.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014346

RESUMO

Signaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics. Using T cell activation as a model, we observe hundreds of unstudied phosphorylation sites that modulate NFAT transcriptional activity. We identify the phosphorylation-mediated nuclear localization of the phosphatase PHLPP1 which promotes NFAT but inhibits NFκB activity. We also find that specific phosphosite mutants can alter gene expression in subtle yet distinct patterns, demonstrating the potential for fine-tuning transcriptional responses. Overall, base editor screening of PTM sites provides a powerful platform to dissect PTM function within signaling pathways.

5.
RSC Chem Biol ; 4(10): 765-773, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37799579

RESUMO

Evolution has diversified the mammalian proteome by the generation of protein isoforms that originate from identical genes, e.g., through alternative gene splicing or post-translational modifications, or very similar genes found in gene families. Protein isoforms can have either overlapping or unique functions and traditional chemical, biochemical, and genetic techniques are often limited in their ability to differentiate between isoforms due to their high similarity. This is particularly true in the context of highly dynamic cell signaling cascades, which often require acute spatiotemporal perturbation to assess mechanistic details. To that end, we describe a method for the selective perturbation of the individual protein isoforms of the mitogen-activated protein kinase (MAPK) p38. The genetic installation of a photocaging group at a conserved active site lysine enables the precise light-controlled initiation of kinase signaling, followed by investigation of downstream events. Through optical control, we have identified a novel point of crosstalk between two major signaling cascades: the p38/MAPK pathway and the extracellular signal-regulated kinase (ERK)/MAPK pathway. Specifically, using the photoactivated p38 isoforms, we have found the p38γ and p38δ variants to be positive regulators of the ERK signaling cascade, while confirming the p38α and p38ß variants as negative regulators.

6.
bioRxiv ; 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37292918

RESUMO

The JAK-STAT pathway integrates complex cytokine signals via a limited number of molecular components, inspiring numerous efforts to clarify the diversity and specificity of STAT transcription factor function. We developed a computational workflow to make global cytokine-induced gene predictions from STAT phosphorylation dynamics, modeling macrophage responses to IL-6 and IL-10, which signal through common STATs, but with distinct temporal dynamics and contrasting functions. Our mechanistic-to-machine learning model identified select cytokine-induced gene sets associated with late pSTAT3 timeframes and a preferential pSTAT1 reduction upon JAK2 inhibition. We predicted and validated the impact of JAK2 inhibition on gene expression, identifying dynamically regulated genes that were sensitive or insensitive to JAK2 variation. Thus, we successfully linked STAT signaling dynamics to gene expression to support future efforts targeting pathology-associated STAT-driven gene sets. This serves as a first step in developing multi-level prediction models to understand and perturb gene expression outputs from signaling systems.

7.
J Immunol ; 211(2): 252-260, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37265402

RESUMO

SARS-CoV-2 has caused an estimated 7 million deaths worldwide to date. A secreted SARS-CoV-2 accessory protein, known as open reading frame 8 (ORF8), elicits inflammatory pulmonary cytokine responses and is associated with disease severity in COVID-19 patients. Recent reports proposed that ORF8 mediates downstream signals in macrophages and monocytes through the IL-17 receptor complex (IL-17RA, IL-17RC). However, generally IL-17 signals are found to be restricted to the nonhematopoietic compartment, thought to be due to rate-limiting expression of IL-17RC. Accordingly, we revisited the capacity of IL-17 and ORF8 to induce cytokine gene expression in mouse and human macrophages and monocytes. In SARS-CoV-2-infected human and mouse lungs, IL17RC mRNA was undetectable in monocyte/macrophage populations. In cultured mouse and human monocytes and macrophages, ORF8 but not IL-17 led to elevated expression of target cytokines. ORF8-induced signaling was fully preserved in the presence of anti-IL-17RA/RC neutralizing Abs and in Il17ra-/- cells. ORF8 signaling was also operative in Il1r1-/- bone marrow-derived macrophages. However, the TLR/IL-1R family adaptor MyD88, which is dispensable for IL-17R signaling, was required for ORF8 activity yet MyD88 is not required for IL-17 signaling. Thus, we conclude that ORF8 transduces inflammatory signaling in monocytes and macrophages via MyD88 independently of the IL-17R.


Assuntos
COVID-19 , Fases de Leitura Aberta , SARS-CoV-2 , Animais , Humanos , Camundongos , COVID-19/imunologia , COVID-19/virologia , Citocinas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , SARS-CoV-2/metabolismo
8.
Trends Immunol ; 44(7): 496-498, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37258361

RESUMO

Tissue and inflammatory contexts are well appreciated to shape macrophage function to promote health or disease. However, there has been minimal progress towards understanding how these contexts modify signaling-to-transcription networks. Integration of mechanistic modeling and data-driven approaches will be crucial for investigating how cell state impacts macrophage decision-making.


Assuntos
Promoção da Saúde , Transdução de Sinais , Humanos , Macrófagos/metabolismo , Redes Reguladoras de Genes
9.
Curr Opin Immunol ; 74: 150-155, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063833

RESUMO

Cells integrate complex cytokine cues and other inflammatory stimuli through activation of the signal transducers and activators of transcription (STAT) family of transcription factors to drive the appropriate anti-microbial, inflammatory, and resolving functions. Here, we discuss recent progress in our understanding of mechanisms supporting STAT functional diversity. Signaling component availability and the strength of receptor and STAT interactions emerge as important determinants of immune function. The resultant dynamics of STAT activation, together with stimulus-specific variation in STAT post-translationally modified states, will impact downstream binding partners to support transcription of distinct gene subsets. Understanding how context-dependent STAT function is encoded to dictate cytokine specificity, crosstalk, and control of inflammation will guide therapeutic efforts to selectively perturb STAT-regulated responses.


Assuntos
Transdução de Sinais , Transativadores , Citocinas/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Front Immunol ; 12: 749597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712237

RESUMO

The ability of immune cells to sense changes associated with malignant transformation as early as possible is likely to be important for the successful outcome of cancer immunosurveillance. In this process, the immune system faces a trade-off between elimination of cells harboring premalignant or malignant changes, and autoimmune pathologies. We hypothesized that the immune system has therefore evolved a threshold for the stage of transformation from normal to fully malignant cells that first provides a threat (danger) signal requiring a response. We co-cultured human macrophages with a unique set of genetically related human cell lines that recapitulate successive stages in breast cancer development: MCF10A (immortalized, normal); MCFNeoT (benign hyperplasia); MCFT1 (atypical hyperplasia); MCFCA1 (invasive cancer). Using cytokines-based assays, we found that macrophages were inert towards MCF10A and MCFNeoT but were strongly activated by MCFT1 and MCFCA1 to produce inflammatory cytokines, placing the threshold for recognition between two premalignant stages, the earlier stage MCFNeoT and the more advanced MCFT1. The cytokine activation threshold paralleled the threshold for enhanced phagocytosis. Using proteomic and transcriptomic approaches, we identified surface molecules, some of which are well-known tumor-associated antigens, that were absent or expressed at low levels in MCF10A and MCFNeoT but turned on or over-expressed in MCFT1 and MCFCA1. Adding antibodies specific for two of these molecules, Annexin-A1 and CEACAM1, inhibited macrophage activation, supporting their role as cancer "danger signals" recognized by macrophages.


Assuntos
Transformação Celular Neoplásica , Ativação de Macrófagos , Macrófagos/imunologia , Anexina A1/imunologia , Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/imunologia , Humanos , Neoplasias/imunologia , Fagocitose
11.
Sci Signal ; 14(698): eabe5137, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34516753

RESUMO

Tissue-specific cytokine stimuli orchestrate specialized homeostatic functions of resident macrophages. In the lung, steady-state signaling by the cytokine GM-CSF is critical for alveolar macrophage (AM) development and function. Here, we showed that CISH, a suppressor of cytokine signaling (SOCS) family member that is acutely induced by diverse cytokine stimuli in many tissues, was expressed constitutively in AMs in response to steady-state GM-CSF signaling. Cish deficiency led to the generation of foamy AMs and the accumulation of pulmonary surfactant. These phenotypic changes were associated with enhanced activation of STAT5, AKT, and ERK and increased expression of the gene encoding the transcription factor GATA2. RNA-seq analysis of Cish−/− AMs revealed a set of dysregulated immune and lipid-process modules, including the increased expression of genes enriched for GATA2-binding motifs. Last, Cish-deficient, bone marrow­derived macrophages showed increased Gata2 expression and accumulated more lipid upon incubation with bronchoalveolar lavage fluid compared with Cish-sufficient cells. Thus, CISH is part of a feedback loop that constrains homeostatic cytokine signaling and Gata2 expression to maintain AM identity and function.


Assuntos
Citocinas , Proteínas Supressoras da Sinalização de Citocina , Citocinas/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
12.
Cell ; 184(15): 3847-3849, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34297928

RESUMO

Treg-mediated immunosuppression must be tightly regulated to support immunity while limiting tissue damage. In this issue of Cell, Wong et al. and Marangoni et al. use high-resolution imaging to define feedback circuits that quantitatively control local Treg expansion and function.


Assuntos
Terapia de Imunossupressão , Linfócitos T Reguladores , Tolerância Imunológica , Linfócitos T Reguladores/imunologia
13.
Immunity ; 54(5): 845-847, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979580

RESUMO

Activation of NF-κB is a common downstream consequence of inflammatory stimulation, yet it achieves stimulus-specific transcriptional responses. In this issue of Immunity, Adelaja et al. use single-cell imaging and computational approaches to understand temporal features of NF-κB dynamics that transmit information about immune threats.


Assuntos
NF-kappa B , Transdução de Sinais , NF-kappa B/metabolismo
14.
Immunohorizons ; 5(2): 117-132, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622708

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR)-based methods have revolutionized genome engineering and the study of gene-phenotype relationships. However, modifying cells of the innate immune system, especially macrophages, has been challenging because of cell pathology and low targeting efficiency resulting from nucleic acid activation of intracellular sensors. Likewise, lymphocytes of the adaptive immune system are difficult to modify using CRISPR-enhanced homology-directed repair because of inefficient or toxic delivery of donor templates using transient transfection methods. To overcome these challenges and limitations, we modified existing tools and developed three alternative methods for CRISPR-based genome editing using a hit-and-run transient expression strategy, together with a convenient system for promoting gene expression using CRISPRa. Overall, our CRISPR tools and strategies designed to tackle both murine and human immune cell genome engineering provide efficient alternatives to existing methods and have wide application not only in terms of hematopoietic cells but also other mammalian cell types of interest.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Marcação de Genes/métodos , Sistema Imunitário , Animais , Humanos , Linfócitos/metabolismo , Macrófagos/metabolismo , Camundongos
15.
Elife ; 82019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31385572

RESUMO

Despite existing evidence for tuning of innate immunity to different classes of bacteria, the molecular mechanisms used by macrophages to tailor inflammatory responses to specific pathogens remain incompletely defined. By stimulating mouse macrophages with a titration matrix of TLR ligand pairs, we identified distinct stimulus requirements for activating and inhibitory events that evoked diverse cytokine production dynamics. These regulatory events were linked to patterns of inflammatory responses that distinguished between Gram-positive and Gram-negative bacteria, both in vitro and after in vivo lung infection. Stimulation beyond a TLR4 threshold and Gram-negative bacteria-induced responses were characterized by a rapid type I IFN-dependent decline in inflammatory cytokine production, independent of IL-10, whereas inflammatory responses to Gram-positive species were more sustained due to the absence of this IFN-dependent regulation. Thus, disparate triggering of a cytokine negative feedback loop promotes tuning of macrophage responses in a bacteria class-specific manner and provides context-dependent regulation of inflammation dynamics.


Assuntos
Retroalimentação Fisiológica , Bactérias Gram-Negativas/imunologia , Bactérias Gram-Positivas/imunologia , Interferon Tipo I/metabolismo , Macrófagos/imunologia , Pneumonia Bacteriana/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
J Immunol ; 201(2): 757-771, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29898962

RESUMO

Macrophage activation by bacterial LPS leads to induction of a complex inflammatory gene program dependent on numerous transcription factor families. The transcription factor Ikaros has been shown to play a critical role in lymphoid cell development and differentiation; however, its function in myeloid cells and innate immune responses is less appreciated. Using comprehensive genomic analysis of Ikaros-dependent transcription, DNA binding, and chromatin accessibility, we describe unexpected dual repressor and activator functions for Ikaros in the LPS response of murine macrophages. Consistent with the described function of Ikaros as transcriptional repressor, Ikzf1-/- macrophages showed enhanced induction for select responses. In contrast, we observed a dramatic defect in expression of many delayed LPS response genes, and chromatin immunoprecipitation sequencing analyses support a key role for Ikaros in sustained NF-κB chromatin binding. Decreased Ikaros expression in Ikzf1+/- mice and human cells dampens these Ikaros-enhanced inflammatory responses, highlighting the importance of quantitative control of Ikaros protein level for its activator function. In the absence of Ikaros, a constitutively open chromatin state was coincident with dysregulation of LPS-induced chromatin remodeling, gene expression, and cytokine responses. Together, our data suggest a central role for Ikaros in coordinating the complex macrophage transcriptional program in response to pathogen challenge.


Assuntos
Cromatina/metabolismo , Fator de Transcrição Ikaros/metabolismo , Inflamação/imunologia , Macrófagos/fisiologia , Animais , Diferenciação Celular , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica/imunologia , Humanos , Fator de Transcrição Ikaros/genética , Inflamação/genética , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica , Células RAW 264.7
17.
Immunity ; 47(2): 298-309.e5, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28801231

RESUMO

Despite the widespread use of glucocorticoids (GCs), their anti-inflammatory effects are not understood mechanistically. Numerous investigations have examined the effects of glucocorticoid receptor (GR) activation prior to inflammatory challenges. However, clinical situations are emulated by a GC intervention initiated in the midst of rampant inflammatory responses. To characterize the effects of a late GC treatment, we profiled macrophage transcriptional and chromatinscapes with Dexamethasone (Dex) treatment before or after stimulation by lipopolysaccharide (LPS). The late activation of GR had a similar gene-expression profile as from GR pre-activation, while ameliorating the disruption of metabolic genes. Chromatin occupancy of GR was not predictive of Dex-regulated gene expression, contradicting the "trans-repression by tethering" model. Rather, GR activation resulted in genome-wide blockade of NF-κB interaction with chromatin and directly induced inhibitors of NF-κB and AP-1. Our investigation using GC treatments with clinically relevant timing highlights mechanisms underlying GR actions for modulating the "inflamed epigenome."


Assuntos
Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Inflamação/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Receptores de Glucocorticoides/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Células Cultivadas , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Dexametasona/uso terapêutico , Glucocorticoides/uso terapêutico , Humanos , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo , Transcriptoma
18.
Sci Rep ; 7(1): 1428, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469251

RESUMO

TLR4 signalling through the MyD88 and TRIF-dependent pathways initiates translocation of the transcription factor NF-κB into the nucleus. In cell population studies using mathematical modeling and functional analyses, Cheng et al. suggested that LPS-driven activation of MyD88, in the absence of TRIF, impairs NF-κB translocation. We tested the model proposed by Cheng et al. using real-time single cell analysis in macrophages expressing EGFP-tagged p65 and a TNFα promoter-driven mCherry. Following LPS stimulation, cells lacking TRIF show a pattern of NF-κB dynamics that is unaltered from wild-type cells, but activation of the TNFα promoter is impaired. In macrophages lacking MyD88, there is minimal NF-κB translocation to the nucleus in response to LPS stimulation, and there is no activation of the TNFα promoter. These findings confirm that signalling through MyD88 is the primary driver for LPS-dependent NF-κB translocation to the nucleus. The pattern of NF-κB dynamics in TRIF-deficient cells does not, however, directly reflect the kinetics of TNFα promoter activation, supporting the concept that TRIF-dependent signalling plays an important role in the transcription of this cytokine.


Assuntos
Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Camundongos , Fator 88 de Diferenciação Mieloide , Células RAW 264.7 , Transdução de Sinais
19.
Cell Syst ; 4(4): 379-392.e12, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28365150

RESUMO

Cell-to-cell variation in gene expression and the propagation of such variation (PoV or "noise propagation") from one gene to another in the gene network, as reflected by gene-gene correlation across single cells, are commonly observed in single-cell transcriptomic studies and can shape the phenotypic diversity of cell populations. While gene network "rewiring" is known to accompany cellular adaptation to different environments, how PoV changes between environments and its underlying regulatory mechanisms are less understood. Here, we systematically explored context-dependent PoV among genes in human macrophages, utilizing different cytokines as natural perturbations of multiple molecular parameters that may influence PoV. Our single-cell, epigenomic, computational, and stochastic simulation analyses reveal that environmental adaptation can tune PoV to potentially shape cellular heterogeneity by changing parameters such as the degree of phosphorylation and transcription factor-chromatin interactions. This quantitative tuning of PoV may be a widespread, yet underexplored, property of cellular adaptation to distinct environments.


Assuntos
Redes Reguladoras de Genes , Variação Genética , Macrófagos/fisiologia , Simulação por Computador , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-10/fisiologia , Processos Estocásticos
20.
Mol Cell Proteomics ; 16(4 suppl 1): S172-S186, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28235783

RESUMO

The innate immune system is the organism's first line of defense against pathogens. Pattern recognition receptors (PRRs) are responsible for sensing the presence of pathogen-associated molecules. The prototypic PRRs, the membrane-bound receptors of the Toll-like receptor (TLR) family, recognize pathogen-associated molecular patterns (PAMPs) and initiate an innate immune response through signaling pathways that depend on the adaptor molecules MyD88 and TRIF. Deciphering the differences in the complex signaling events that lead to pathogen recognition and initiation of the correct response remains challenging. Here we report the discovery of temporal changes in the protein signaling components involved in innate immunity. Using an integrated strategy combining unbiased proteomics, transcriptomics and macrophage stimulations with three different PAMPs, we identified differences in signaling between individual TLRs and revealed specifics of pathway regulation at the protein level.


Assuntos
Imunidade Inata , Macrófagos/imunologia , Proteoma/metabolismo , Infecções por Pseudomonas/imunologia , Receptores Toll-Like/metabolismo , Animais , Perfilação da Expressão Gênica , Humanos , Camundongos , Pseudomonas aeruginosa/imunologia , Células RAW 264.7 , Processamento Pós-Transcricional do RNA , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA